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A characteristic feature of a steady trailing line vortex from one side of a wing, 
and of other types of line vortex, is the existence of strong axial currents near 
the axis of symmetry. The purpose of this paper is to account in general terms 
for this axial flow in trailing line vortices. The link between the azimuthal and 
axial components of motion in a steady line vortex is provided by the pressure; 
the radial pressure gradient balances the centrifugal force, and any change in the 
azimuthal motion with distance x downstream produces an axial pressure 
gradient and consequently axial acceleration. 

It is suggested, in a discussion of the evolution of an axisymmetric line vortex 
out of the vortex sheet shed from one side of a wing, that the two processes of 
rolling-up of the sheet and of concentration of the vorticity into a smaller cross- 
section should be distinguished; the former always occurs, whereas the latter 
seems not to be inevitable. 

In  5 4 there is given a similarity solution for the flow in a trailing vortex far 
downstream where the departure of the axial velocity from the free stream speed 
is small. The continual slowing-down of the azimuthal motion by viscosity leads 
to a positive axial pressure gradient and consequently to continual loss of axial 
momentum, the asymptotic variation of the axial velocity defect at the centre 
being as x-l log x. 

The concept of the drag associated with the core of a trailing vortex is intro- 
duced, and the drag is expressed as an integral over a transverse plane which is 
independent of x. This drag is related to the arbitrary constant appearing in the 
above similarity solution. 

1. Introduction 
Steady sxisymmetric flow fields in which the vorticity has large magnitude in 

the neighbourhood of the axis of symmetry are common in aeronautics and 
geophysics (e.g. trailing vortices from lifting surfaces, jet-intake vortices, bath- 
drain vortices, tornadoes). A n  interesting and prominent feature of such flow 
fields is that strong axial currents occur near the axis of symmetry. This is a little 
surprising at first sight because it often happens also that the axial pressure 
gradient everywhere outside the region near the axis is manifestly too small to 
generate such axial motions. One would like to have clear ideas about the 
mechanism, presumably inviscid, by which strong axial motions are generated 
near the axis initially, and one would like also to know if the effect of viscosity, 
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which is likely to be significant near the axis in view of the large gradients there, 
modifies these axial motions in ways other than by direct frictional retardation. 

Both these points can be clarified a little by a consideration of the steady 
trailing line vortex from one side of a wing. First we see what information can 
be gained from general equations for steady axisymmetric flow with vorticity 
confined to a region near the axis. 

2. Steady axisymmetric flow in a trailing vortex 
We use cylindrical co-ordinates x, r,  $, with corresponding velocity components 

u,v,w. Then the equations of motion for steady axisymmetric flow of incom- 
pressible fluid are, without approximation, 

where 

The equation of mass conservation is satisfied identically when 

(2.2) 

Other useful dependent variables are 

C = rw, 

representing (277)-1 times the circulation round a symmetrically placed circle, 
and the Bernoulli function, or (p-l times the) total pressure, 

H = P -+~(u2+v2+w2). 
P 

If the fluid is inviscid, C and H are functions of @ alone, and the equation 
governing the flow is then (Squire 1956) 

The axial component of vorticity is r-laC/ar. 
The interest here is in flow fields in which axial gradients are of small magnitude 

compared with radial gradients. This allows the boundary-layer-type approxi- 
mation 

v < u. -<7, 8x cr 
a a  
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The only change in equations (2.1) and (2.3) is that now 

but (2.2) reduces to the approximate form 
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We note that (2.1), which can be regarded as an equation for the axial component 
u, is coupled with the azimuthal component w solely through the axial variation 
of centrifugal force; this is the key to the understanding either of the inviscid 
generation of strong axial motions or their subsequent modification (indirectly) 
by viscosity. The pressure will be supposed to be uniform, and equal to po say, 
far from the axis, whence (2.6) gives 

We shall consider flow fields in which C tends rapidly to a constant, Go say, as 
r -+ 00. The region in which the vorticity is non-zero and C varies will be spoken 
of as the vortex ‘core’. 

In  a simple illustrative case in which C is constant for r > a and zero for r < a 
(a cylindrical vortex sheet), we have 

thus the pressure in the core increases if the core diameter (2a) increases with 
distance downstream, leading to axial deceleration, whereas if the core diameter 
decreases as x increases there is a fall in pressure and axial acceleration. (The 
relevance of (2.7) to the equation of motion (2.1) is in contrast to the conventional 
boundary-layer situation in which the pressure variation across the layer is 
negligibly small and has no effect on the development of the layer.) This varia- 
tion of the axial velocity in the core is in the direction required by conservation 
of mass and the given variation of core diameter. It follows that a change in 
either direction-increase or decrease of the core diameter with distance down- 
stream-is self-consistent, qualitatively at  least. Both kinds of change are likely 
to occur in different circumstances. 

In  the case of flow in a trailing vortex from one side of a wing in an infinite 
body of fluid, all streamlines originate in a region where the pressure is uniform 
and equal to po and the fluid velocity is uniform with components (17, 0, 0). 
Some streamlines will have passed through the boundary layer at the wing 
s d a c e ,  or some other region where the effect of viscous forces is appreciable, and 
the Bernoulli function at any point in the vortex may therefore be written as 
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Then, on neglecting the small term 3v2 and making use of (2.7), we have, for the 
axial velocity a t  any point, 

= U2+Jr OD rz 1 F d r - 2 A H .  ac2 

If the vorticity in the trailing vortex is one-signed, as is normally the case, 
LC2/ar > 0 and the second term on the right-hand side of (2.8) is positive; this 
second term is the increase in u2 which by Bernoulli’s theorem would accompany 
the pressure drop due to centrifugal force in the absence of total head losses. 
Total head losses do of course occur, but there appears not to be any reason to 
expect a close connexion between the second and third terms on the right-hand 
side of (2.8) or to expect dominance of the third term, at any rate in the simpler 
types of trailing vortex. Consider for example the case of laminar flow at very 
large Reynolds number a t  the wing surface. The vortex sheet shed from the wing 
here may remain as a discrete sheet of small thickness for some distance down- 
stream after rolling up into a spiral (Mangler & Smith 1959), with AH = 0 
outside this sheet. The circulation, and consequently also the axial velocity u, 
will then increase with distance from the axis in a succession of finite jumps as 
the different turns of the spiral sheet are crossed. At positions between adjacent 
turns of the sheet there is zero total head loss. The distributions of C and u are 
ultimately made continuous and smooth by the diffusive action of viscosity, and 
this process is inevitably accompanied by losses of total head throughout the 
vortex core, but it is not likely that the general magnitude of u is changed 
thereby. (In the closely related problem of a vortex in which the velocity is 
independent of x, but depends on t ,  it is possible to follow mathematically the 
transition from distributions of C and u with steps to continuous distributions 
due to the action of viscosity. The changes in the distributions of C and u are here 

independent and urdr is constant. The order of magnitude of u changes 

with t only inasmuch as the total width of the vortex core changes.) 
Consequently it appears to be sensible to consider the magnitude of the axial 

velocity in the absence of total head losses, as a particular and not untypical case. 
The interesting feature of (2 .8)  is that i t  shows there is then an excess axial 
velocity, and a large one, in the core of the vortex. Outside the core, where C is 
constant, we have u = U; but inside the core u > U and u increases monotonically 
toward the axis. Furthermore, if the azimuthal velocity w is appreciably larger 
in magnitude than the free stream speed U ,  as is often so in practice, u and w are 
comparable in magnitude. In  the simple example in which a core of radius a 
rotates rigidly with angular velocity Q, and with AH = 0, we have 

loOD 

and 
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3. The development of an axisymmetric trailing vortex 
Although the existence of strong axial flow has been seen to be an inevitable 

feature of the core of a trailing vortex, provided only that total head losses are 
not large, it will be useful to consider briefly the development of the excess axial 
velocity. There is also the associated and important question of the way in which 
the diameter of the vortex core is determined by the upstream conditions. The 
evolution of an axisymmetric and approximately cylindrical trailing vortex out 
of the vortex sheet shed by one side of a wing is complicated by dependence on 
the precise geometry of the wing, and only loose qualitative arguments seem to 
be possible. 

It is as well to distinguish two different processes in this transition from vortex 
sheet near the wing to trailing vortex further downstream, viz. (1) the rolling-up 
of the sheet, and ( 2 )  the contraction (or expansion) of the region of non-zero 
vorticity in a plane transverse to the free stream. The process of rolling-up of 
a vortex sheet with a free edge is well understood in principle, although it is 
difficult to work out the details in a particular case. The free edge of the vortex 
sheet curls over, under the influence of the induced velocity field of the vortex 
sheet, and takes up the form of a spiral with a continually increasing number of 
turns, as depicted in figure 1, which is one of many reproductions of a sketch due 
to Prandtl. Observation of the velocity distribution behind a wing supports 
such a picture (see, for example, Modern Developments in Fluid Dynamics, edited 
by S. Goldstein, 5 12). 

FIQURE 1. Prandtl’s sketch of the rolling-up of a trailing vortex sheet. 

The second of the two processes is a change in lateral dimensions of the partially 
rolled-up vortex. Observation of wing-tip vortices leaves no doubt that in some 
circumstances this change is a contraction, yielding a more concentrated vortex, 
although it is not clear what distinguishes these circumstances. Some authori- 
tative writers have given the impression that the two processes are equally 
inevitable; for instance, we find, in 5 12 of Modern Developments, the statement: 
‘The (plane) trailing vortex sheet. . . is not a possible stable form. It would roll 
up at its edges, the vorticity being concentrated more and more in the rolled-up 
portions, until it presented the appearance of two concentrated vortices a t  a 
distance apart somewhat less than the span of the aerofoil.’ However, I believe 
that, whereas rolling-up of the free edge of vortex sheet is inevitable, concentra- 

t Since the strength of the vortex sheet is zero downstream from the centre of the wing, 
one might ask why the sheet from one side of the wing does not have two free edges, both 
of which roll up. The vortex sheet does indeed distort over its whole area, but it is obvious 
from the expression for the induced velocity due to a sheet of given form that the rate of 
distortion of the sheet is greatest where the gradient of strength of the sheet is greatest, 
and this occurs near the ‘edge’ shed from the wing-tip. 



650 G .  K.  Batchelor 

tion of the vorticity is not, and that contraction and expansion of the cross- 
section are both possible in principle. The notion of concentration of the trailing 
vortex seems to be based on the assumption that in a two-dimensional flow a 
vortex sheet (which then appears as a line in the plane of flow) with a free edge 
rolls up like a carpet, leaving little space between successive turns of the spiral. 
This is erroneous; in a two-dimensional flow the continual increase in the number 
of turns in the spiral is accompanied by a lengthening of the line representing the 
sheet in the plane of flow and by an increase in the radius of curvature of the 
outer-most turn (until it is comparable with the initial length of the sheet), and 
the fluid enclosed by the outer turns of the spiral cannot be squeezed out. It is 
known that the dispersion or second moment 

c K i ( 4 + Y i 2 )  
i 

of a finite group of point vortices of strength K$ in inviscid fluid is an invariant 
of the motion (Lamb, Hydrodynamics, 6th edition, 8 157), and it is not difficult 
to establish a similar result for a continuous distribution of vorticity in two 
dimensions (or for a distribution with discontinuities across certain lines) for 
which the dispersion is finite. Thus, in a two-dimensional flow, the degree of 
concentration of a region of one-signed vorticity, as measured by the dispersion 
at any rate, does not tend to increase or decrease. Other authors (Birkhoff & 
Fisher 1959; Hama & Burke 1960) have noticed that a tendency to concentration 
of a spiral vortex sheet does not appear to be consistent with the properties of 
two-dimensional motion. 

An explanation of such ‘tightening’ or concentration of a trailing vortex’ as 
does occur must be sought in the three-dimensionality of the flow, or, more 
specifically, in the existence in the core of a non-zero and negative divergence 
of the velocity vector in planes transverse to the trailing vortex. We have seen 
that the axial velocity in the core of an axisymmetric vortex may be quite large, 
sometimes as much as several times the free stream speed, showing that elements 
of fluid entering the vortex core may experience appreciable axial acceleration. 
The occurrence of appreciable concentration of the trailing vortex thus depends 
on whether axial acceleration of these elements occurs before or after they enter 
the vortex core; if it  occurs after they enter the core, the core diameter far down- 
stream will be smaller than near the wing and a concentrated trailing vortex will 
result. The vortex core is of course not well defined near the wing, so that the 
phrase ‘before or after entering the vortex core ’ cannot have a precise meaning. 
The occurrence of contraction or expansion of the vortex core in any particular 
case appears to depend on the configuration of the wing and the trailing vortex 
near the wing. 

A case in which the processes of rolling-up and concentration proceed 
simultaneously and can be described analytically is the ‘conical’ flow field 
on one side of a slender delta wing of small aspect ratio shedding vorticity 
from its straight leading edge (Roy 1952). With the approximation of axi- 
symmetry of the flow, the velocity and pressure in the vortex are here functions 
of r /x  alone, and vorticity of one sign is continually being fed in a t  the outer edge 
of the vortex core at the rate corresponding to increase of the circulation as x, at 
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a given value of r/x. The axial velocity gradient aulax thus varies as x-l, at a 
given value of r/x,  and is positive (owing to the smaller pressure inside the core 
than outside it), showing continual concentration of the vorticity in the core 
although at a rate which diminishes with distance downstream. The fact that 
the diameter of the vortex core increases as x is a little misleading; increase in 
size of the core and concentration of the vortex (in the sense of a non-zero rate 
of increase of axial vorticity with respect to x) are compatible here because 
vorticity is being added continually at a radius which increases with x and the 
vortex core is being built up by external means. 

4. A similarity solution for the flow in a trailing vortex far downstream 
During the rolling-up process the effect of viscosity is likely to be confined to 

a diffusive thickening of the vortex sheet shed by the wing. The number of 
convolutions of the spiral into which the sheet forms increases continually, and 
ultimately the neighbouring turns of a spiral are close enough for viscous 
spreading to make the distribution of vorticity a smooth one. This is the justifica- 
tion for treating the trailing vortex far downstream as axisymmetric. 

Viscosity will of course continue to have an effect on the vortex after the 
vorticity distribution has been made continuous, and will presumably lead 
ultimately to a slow diffusive increase of the core diameter as 2). It is of some 
interest to  deduce the way in which the gradual slowing-down of the azimuthal 
motion by viscous action leads to an increased pressure a t  the axis (there being 
less centrifugal force then), and so to an axial deceleration of the core fluid. It 
proves to be possible to reveal these effects explicitly in a similarity solution 
which holds very far downstream, where u differs from the free stream speed U 
by a small amount only, as in the theory of wakes without swirl. 

Far downstream, where the boundary-layer-type approximations ajax < a/ar 
and v < u are supplemented by the approximation 

the equation of motion (2.1) reduces to 

(2.2) reduces to (2.6) as before, and (2.3) becomes 

This latter equation can also be written as 

(4.3) 

which is the same, apart from replacement of t by x lU,  as the equation for 
viscous decay of the circulation in a two-dimensional motion. The explicit 
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expression for p provided by (2.7) may be substituted in (4.1) to give 

in which the right-hand side represents the axial deceleration arising from the 
viscous decay of the azimuthal motion. 

The solution of (4.2) or (4.3) for w or C as a function of r at any value of x may 
be written down explicitly in terms of a given distribution of w as a function of 
r at some smaller value of x by making use of the known properties of the heat- 
conduction equation satisfied by the vorticity. As is well known, the asymptotic 
form of the solution as x-fm is 

C = rw = Co(l-e-v), (4.5) 

where Ur2 7 = -  
4vx 

and C, is the (non-zero) value of C at large r .  With this expression for C the 
pressure (see (2.7)) is given by 

where 

(1 - e”)2 

7 
+ 2ei(7) - 2ei(27), - - 

has been tabulated. Equation (4.4) for u now becomes 

( 4 4  

(4.7) 

Equation (4.4) or (4.7) is of the same form as the equation for radial conduction 
of heat in a solid in two dimensions (again with t replaced by x/U) with a main- 
tained and distributed heat source whose density (heat released per unit interval 
of x/ U and of 7 ~ ~ 2 )  is a function of r and x which at large values of x takes the form 

x-2 x func ( ~ 2 1 ~ ) .  

If the heat source density were zero for values of x above a certain value, the 
solution for U - u would tend, as x -+ a, to the form 

B U2 
-exp 8vx (-g), 

where B is proportional to the total heat released. But the heat source density 
is not zero here and the nature of the asymptotic solution may be different. We 



Axial jlow in trailing line vortices 653 

obtain a clearer view of the asymptotic dependence of u on x by integrating all 
terms of (4.7) over a cross-sectional plane: 

- c: -- 
4 u x  

since P N 7-l as 7 +a. Thus 

c: x u  Som ( U - u ) r d r  = -log- +const. 
4 u  v (4.9) 

where v/U has been used as a convenient unit of length in the logarithm. 
This relation suggests we should look for an asymptotic solution of (4.7) of 

c: x u  c: U2 
the form 

‘u = u - __log- Q1(7) + - Q2(7) - L G  e-7, 
8vx v Svx 

(4.10) 

where L is a constant with the dimensions of area, and the last term, the com- 
plementary function, accounts for any initial velocity defect which may be 
independent of the circulation. When (4.10) is substituted in (4.7), there are some 
terms proportional to x-210g ( x U / v )  and the remaining terms are proportional 
to x-2. The former group of terms have zero sum if 

7&I + &; + 7&; + &1 = 0, (4.11) 

of which the only solution free from singularities is proportional to exp (-7). 
The multiplicative constant is required by the integral relation (4.9) to be unity, 
whence we have 

The group of terms proportional to x - ~  have zero sum if 

(4.12) &Ar) = e-ll* 

$2; + &; + 7Q; + &a = -&1 +P+ YP’. (4.13) 

One integration, and choice of the constant of integration to avoid a singularity 
at 7 = 0, gives e-11- 

Q ; + Q ~  = 1 + P. 
7 

From a second integration we have 

(4.14) 

The term containing the constant of integration M can be regarded as absorbed 
in the last term of (4.10), which is equivalent to ‘normalizing’ the function Q2 

so that Q2(0) = 0. In  terms of tabulated functions, we have, after substituting 
from (4.6) and putting M = 0, 

Q2(7) = e-v(log 7 + ei(7)  - 0.807) + 2ei(7) - 2ei(27).  (4.15) 

The functions P(y), Qr(q) and Q2(7) have been evaluated and are shown 
graphically in figure 2. 
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FIGURE 2. The functions P (defining the pressure, see (4.6)), Q1 and Qz 
(defining the axial velocity, see (4.10)). 

A solution of the 'similarity' form (4.10) thus exists. It is evident also that the 
axial velocity distribution tends to the form (4.10) as x-fco for arbitrary con- 
ditions at some initial value of x, since the difference between u. and the similarity 
solution (4.10) satisfies a heat-conduction equation with zero heat source density. 
It appears that the effect of the decay of the swirling motion is to increase the 
pressure in the vortex core and consequently to decrease the axial velocity there; 
in this way the induced drag on the wing associated with the generation of the 
trailing vortex is gradually manifested as an ordinary wake with an axial velocity 
defect. The integral over a lateral plane of the axial velocity defect arising from 
this conversion of azimuthal motion increases as logx, but the magnitude of 
U - u a t  any point is continually being diminished by diffusive spreading and 
so varies as x-l log x. 

To complete the analysis we should inquire whether some restriction must be 
placed on the azimuthal velocity, or, equivalently, on C,, for the above results to 
be consistent with the initial assumption that Iu - UI -g U. The maximum value 
of Q2 is about 0.13, so that the axial velocity defect given by (4.10) is a small 
fraction of U at all values of r provided 

- l0g--0*13 +L-< U2 u. 
Svx '' ( xvu ) SVX (4.16) 

It does not seem to be possible to turn this into a simple restriction on C,, because 
the constant L is a resultant of contributions from the initial velocity defect 
(which may be independent of C,) and from the slowing down of azimuthal motion 
in the pre-similarity stage; moreover, L is affected by the arbitrary choice of v/U 
as the length unit in the logarithm. A more meaningful condition requires the 
expression of L in terms of some fundamental parameter of the flow as a whole. 
Such a parameter is introduced in the next section. But in any event we see that 
the requirement (4.16) is certainly satisfied at sufficiently large values of 2. 
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The term on the right-hand side of (4.10) which ultimately dominates the axial 
velocity defect is the 0n.e proportional to z-l log x, giving 

the maxima being with respect to r. However, in practice the presence of the 
second of the two trailing vortices may become relevant before the dominance 
of the term containing z-llogz in (4.10) is established. The terms in (4.10) 
containing C; are associated with the induced drag on the wing, whereas the last 
term originates, in part at least, in the profile drag. It appears therefore that the 
contribution to the axial velocity defect from the conversion of the azimuthal 
motion will be dominant, when the vortex core has increased in diameter to the 
limit set by the presence of the second trailing vortex, only if the induced drag 
on the wing is a large fraction of the total drag; we return to this condition in the 
next section. 

Newman (1959) has investigated the flow far downstream in a viscous vortex 
on the assumption that w and u - U are both of small magnitude by comparison 
with U ,  and has argued that in these circumstances the term on the right-hand 
side of (4.4) may be neglected since it is of the second degree in w; the axial and 
azimuthal motions then decay independently and only the last term on the 
right-hand side of (4.10) appears in the asymptotic expression for the axial 
velocity defect. This is not a self-consistent procedure, because with independent 
decay the maximum values of 1 U - ul and I w] diminish as x-l and x-% respectively 
and the term on the right-hand side of (4.4) or (4.7) is asymptotically of the same 
order in x as the other terms in these equations. Moreover, it is not even safe to 
argue that the term on the right-hand side of (4.4) or (4.7), although of the same 
order in x, is in some circumstances numerically much smaller than other terms 
and thus negligible, because, as we have seen, this term has a cumulative effect 
on the axial velocity defect and causes it to diminish as x-llogx rather than 
as x-1. The correct criterion for the axial and azimuthal motions to decay 
independently is that the terms containing Ci in (4.10) should be negligible 
compared with the last term at all values of x for which it is possible to consider 
one trailing vortex in isolation, and this, as remarked above, is equivalent to the 
condition that the induced drag on the wing should be a negligible fraction of the 
total drag. 

5. The drag associated with the core of a trailing vortex 
It is well known that the relation between the drag D on a body held in a 

uniform stream and the axial velocity u far downstream in the associated 
axisymmetric wake (without swirl) is 

It would be interesting to know if there is an analogous relation for a trailing 
line vortex, which would provide a connexion between the velocity distribution 
determined in the preceding section and the origin of the vortex. 
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A single trailing vortex cannot exist wholly in isolation, and it is desirable in 
the first instance to consider the whole wing and vortex system, which will be 
supposed to consist, far downstream, of two similar vortices with different senses 
of rotation, one from each side of the wing. The momentum integral theorem will 
be used, with a control surface enclosing the wing in the form of a right cylinder 
with generators parallel to the x-axis and of which A is the area of each end face. 
The upstream end face and the curved surface of the cylinder are both at a large 
distance from the wing, so that conditions there are approximately as in the 
free stream. Then in the usual way we find 

x-momentum flux outwards across curved surface = pU (U - u)  dA, 

x-momentum flux outwards across end faces = p (u2 - V2) dA, 

resultant normal force on end faces = (po -p) dA, 

s 
s 

f 
where u and p are the (x-component of the) velocity and pressure at the down- 
stream end face distance x from the wing, and the small viscous stress at the 
control surface has been neglected. The drag D on the wing is thus given by 

Following the procedure for a wake without swirl,? we now choose x to be 
large, so as to allow the use of approximations t o p  in (5.2). At positions outside 
the vortex cores the total head loss AH is negligible and 

p = p0++pU2-~p(u2+w2+w2), 

+(w2+ w2) - +( u -up. 
where w and w are orthogonal components of the velocity in the lateral plane; the 
integrand in (5.2) is then 

In  the case of a wake without swirl the dominant contribution to the irrotational 
flow outside the wake, and far from the body, is made by the source-like motion 
which compensates the axial in-flow in the wake, and it is evident that the 
integral of (5.3) over the part of the lateral plane outside the wake then tends to 
zero as x -+ co. In  the case of a trailing vortex, the axial inflow I( U - u) dA acrow 
a lateral plane distance xo downstream does not tend to a constant as xo + co, but 
goes on increasing as log x,, (see (4 .9) ) .  The corresponding contribution to the irro- 
tational flow outside the vortex core is effectively that due to sources distributed 
along the x-axis with line density proportional to xrl, and it may be shown that, 
so far as the effect of these sources is concerned, the integral of (5.3) over the 
part of the lateral plane outside the vortex core converges and tends to zero a0 

x-fco. We are therefore free to include in (5.3) only the irrotational motion 
associated with the axial vorticity in the core. 

(5.3) 

t See Applied Hydro- and Aero-mechanics, by Prandtl and Tietjens (McGraw-Hill1934), 
page 125. 
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At distance r from the centre of one trailing vortex greater than the core 
radius but small compared with.the distance between the two trailing vortices, 
we have 

+(v2 + w2) - +( U - u)2 M C;/2r2. 

It follows that the integral representing the drag associated with an isolated 
trailing vortex is logarithmically divergent in the outer field. This divergence 
reflects the fact that the kinetic energy of the motion in infinite fluid due to a 
single line vortex with non-zero circulation round it is not finite, and it can also 
be linked with the variation of the induced vertical velocity at a wing of large 
span as the reciprocal of the distance from the near wing-tip. However, the 
divergence is in no way dependent on the structure of the core of the trailing 
vortex, and it is useful to define the ‘drag associated with the core of a trailing 

(5.4) V 

vortex ’ as 

P R+m P 

where p and u now refer to the flow field of an isolated axisymmetric trailing 
vortex, far downstream, and v/U has again been used as a convenient reference 
length in the logarithm. D, differs from half the total drag on the wing by an 
amount which depends only on Co and the distance between the two trailing 
vortices far downstream. In  the case of two trailing vortices distance s apart 
far downstream, it may be shown quite readily, from an evaluation of the 
kinetic energy of the motion in the lateral plane, that the total drag D is 

Far downstream the trailing vortex is approximately cylindrical, and the 
pressure in the core is determined by the balance with centrifugal force, as 
represented by (2.7). Substitution for p in (5.4) and two integrations by parts 

in which, consistent with the above remarks about the effect of in-flow in the 
core, u( U - u )  has been approximated by U (  U -u) and the integrand can be 
taken as zero outside the vortex core. This is the required generalization of (5.1). 

We are now in a position to relate the arbitrary constant L occurring in the 
similarity solution (4.10) to the more significant parameter D,. On substituting 
in (5.6) for U -u from (4.10) and recalling that C is a function of y alone, we find 
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in which Q2 and C/C, are given explicitly by (4.5) and (5.15). Thus 

3 = - *nac: f &nLU2, (5.8) 

where a is a positive number not far from unity. The similarity solution (4.10) 
can now be rewritten as 

P 

(5.9) 

If the trailing vortex system from a wing on which the total drag is D consists 
of two vortices with centres distance s apart, we can use (5.5) to write the 
similarity solution in the further alternative form 

1 
u = 

V 

The maximum value of x at which one trailing vortex can be considered in 
isolation occurs when the core diameter is of order s, i.e. when Us21vx is of order 
unity. At this value of x the terms containing C; in (5.10) may be neglected 
provided pci < I>; 
this is a more specific form of the condition, mentioned in the preceding section, 
for the axial and azimuthal motions to decay independently. 
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